Skip to contents

Pick a window before and after a metadata date column

Usage

cg_window_by_metadata(cg, windowing_date_col, preceding_days, following_days)

Arguments

cg

a chronogram

windowing_date_col

the column containing reference date (must repeat the date for each row of that individual's record).

preceding_days

used as filter( date > (windowing_date_col - preceding_days) )

following_days

used as filter( date < (windowing_date_col + following_days) )

Value

A windowed chronogram

Examples

data(pitch_chronogram)

pitch_chronogram
#> # A tibble:     395,051 × 23
#> # A chronogram: try summary()
#>    calendar_date ID    Centre_code Previous_infection Vaccine_interval
#>  * <date>        <fct>       <int> <chr>              <chr>           
#>  1 2020-01-01    100             0 Y                  LONG            
#>  2 2020-01-02    100             0 Y                  LONG            
#>  3 2020-01-03    100             0 Y                  LONG            
#>  4 2020-01-04    100             0 Y                  LONG            
#>  5 2020-01-05    100             0 Y                  LONG            
#>  6 2020-01-06    100             0 Y                  LONG            
#>  7 2020-01-07    100             0 Y                  LONG            
#>  8 2020-01-08    100             0 Y                  LONG            
#>  9 2020-01-09    100             0 Y                  LONG            
#> 10 2020-01-10    100             0 Y                  LONG            
#> # ℹ 395,041 more rows
#> # ℹ 18 more variables: dose_1_date <date>, dose_2_date <date>, Victoria <int>,
#> #   Beta <int>, Gamma <int>, Delta <chr>, Cov2_RBD_MSD <dbl>,
#> #   Cov2_RBD_BAU <dbl>, Cov_2N_MSD <dbl>, Cov_2N_BAU <dbl>, Cov_2S_MSD <dbl>,
#> #   Cov_2S_BAU <dbl>, HKU1_S <dbl>, MERS_S <dbl>, NL63_S <dbl>, OC43_S <dbl>,
#> #   X229E_S <dbl>, Cov_1S <dbl>
#> #  Dates: calendar_date       IDs: ID
#> #  metadata: Centre_code, Previous_infection, Vaccine_interval, dose_1_date, dose_2_date

SevenDaysPrePostDose2 <- cg_window_by_metadata(
  pitch_chronogram, dose_2_date, 7, 7
)

SevenDaysPrePostDose2
#> # A tibble:     8,218 × 23
#> # A chronogram: try summary()
#>    calendar_date ID    Centre_code Previous_infection Vaccine_interval
#>  * <date>        <fct>       <int> <chr>              <chr>           
#>  1 2021-03-17    100             0 Y                  LONG            
#>  2 2021-03-18    100             0 Y                  LONG            
#>  3 2021-03-19    100             0 Y                  LONG            
#>  4 2021-03-20    100             0 Y                  LONG            
#>  5 2021-03-21    100             0 Y                  LONG            
#>  6 2021-03-22    100             0 Y                  LONG            
#>  7 2021-03-23    100             0 Y                  LONG            
#>  8 2021-03-24    100             0 Y                  LONG            
#>  9 2021-03-25    100             0 Y                  LONG            
#> 10 2021-03-26    100             0 Y                  LONG            
#> # ℹ 8,208 more rows
#> # ℹ 18 more variables: dose_1_date <date>, dose_2_date <date>, Victoria <int>,
#> #   Beta <int>, Gamma <int>, Delta <chr>, Cov2_RBD_MSD <dbl>,
#> #   Cov2_RBD_BAU <dbl>, Cov_2N_MSD <dbl>, Cov_2N_BAU <dbl>, Cov_2S_MSD <dbl>,
#> #   Cov_2S_BAU <dbl>, HKU1_S <dbl>, MERS_S <dbl>, NL63_S <dbl>, OC43_S <dbl>,
#> #   X229E_S <dbl>, Cov_1S <dbl>
#> #  Dates: calendar_date       IDs: ID
#> #  metadata: Centre_code, Previous_infection, Vaccine_interval, dose_1_date, dose_2_date